
AFF4 imager Documentation
Release 1.0

Michael Cohen

Feb 08, 2018

Contents

1 Why use AFF4? 3

2 The AFF4 C/C++ Library 5

3 The AFF4 Imager 7
3.1 Acquiring files. 7
3.2 Inspecting AFF4 volumes. 8
3.3 Extracting streams from AFF4 volumes. 9

i

ii

AFF4 imager Documentation, Release 1.0

AFF4 is an advanced, open forensic imaging format. The format has been standardized in the
AFF4StandardSpecification.

Contents 1

https://github.com/aff4/Standard

AFF4 imager Documentation, Release 1.0

2 Contents

CHAPTER 1

Why use AFF4?

The AFF4 format is specifically designed to support a wide range of use cases in forensic evidence capture and
preservation. Some of the benefits of using AFF4 over another proprietary format are

• The AFF4 format is an opened standard with many open source implementations in a variery of languages. The
format itself is very simple and so it will always be possible to extract data even without an proper implementa-
tion.

• AFF4 storage is designed around the widely used Zip file format. This means that you can use typical Zip
recovery utilities to repair corrupted images, inspect the content of images etc.

• AFF4 supports multiple streams within the same volume. This allows multiple sources of evidence to be cap-
tured into the same case file. For example, related memory, disk and logical file streams can be handled simul-
taneously.

• AFF4 supports sparse streams (using the Map stream type). This is useful for representing memory images
(which might have gaps in them) as well as simply representing read errors (rather than simply zero padding
them).

• AFF4 supports arbitrary metadata as RDF statements.

3

AFF4 imager Documentation, Release 1.0

4 Chapter 1. Why use AFF4?

CHAPTER 2

The AFF4 C/C++ Library

This project is a C++ implementation of the AFF4 standard. The library allows reading, writing and verifying AFF4
images, and can be easily integrated into any C++ project.

See the documentation for developers.

5

developers.html

AFF4 imager Documentation, Release 1.0

6 Chapter 2. The AFF4 C/C++ Library

CHAPTER 3

The AFF4 Imager

The main tool implemented in this project is the aff4imager tool. The tool provides a basic framework for imple-
menting imaging tools, and therefore it is also the basis for a number of other tools, such as linpmem, winpmem and
osxpmem (A memory acquisition suite). All the below commands should also work on these tools as well.

You can download the latest release of the aff4 imager through the project’s page. Releases are also statically built for
their respective platforms in order to ensure that they can be easily deployed with minimal system requirements - even
on very old systems.

The following section describes how to use the imager effectively. You can get some helpful messages from the images
itself when run with the –help flag.

3.1 Acquiring files.

The AFF4 imager can acquire multiple files into a new AFF4 volume. These can be devices (such as disks using
/dev/sda) or logical files.

1. Acquiring a disk image:

affimager -i /dev/sda -o /tmp/output.aff4

Note that by default the aff4 imager will append new streams to the output volume if it already exists. This
is useful for appending more relevant evidence after the initial acquisition is completed. If you dont want this
behaviour you can specify the -t (–truncate) flag to truncate the output volume before adding the new stream.

2. Acquiring multiple logical files:

affimager -i /bin/* -o /tmp/output.aff4

Using glob expressions as input files will be expanded as required to include all filenames matching the globs.
This works also on Windows which does not expand globs on the shell.

3. Acquiring files newer than 30 days:

7

https://github.com/rekall-innovations/c-aff4/releases

AFF4 imager Documentation, Release 1.0

find /usr/bin/ -ctime -30 | aff4imager -i @ -o /tmp/output.aff4

Using a single @ as the input filename, makes the aff4 imager read the list of files to acqiure from stdin.
This allows for more sophisticated pre-processing and makes it easier to acquire files with spaces or special
characters in their names (without having to worry about shell escapes). In the above example we use the find
unix command to identify files newer than 30 days and also add them to the image.

4. Enabling multiple threads:

affimager -i /dev/sda -o /tmp/output.aff4 --threads 6

The aff4 imager uses a single thread by default, but if your machine has more cores, then you will see vastly
better performance by allowing more threads to run. This is particularly important when using the default
compression of the zlib compressor which needs more CPU resources.

5. Enabling snappy compression:

affimager -i /dev/sda -o /tmp/output.aff4 --compression snappy

The Snappy compression engine is much faster than the default zlib but trades off compression size. Enabling
snappy compression will result in slightly larger images but should complete faster.

6. Splitting an image into multiple volumes:

affimager -i /dev/sda -o /tmp/output.aff4 --split 650m

Some images are very large. By enabling splitting images it is possible to restrict the maximum size of each
volume. The imager will close off each volume as it is done with it, and so you can start uploading, archiving
each volume as soon as it is finished. Note that the same stream may be split across one or more volumes so you
will need all volumes to properly extract the stream.

7. Acquiring into standard output:

./aff4imager -i /bin/* -o - | gsutil cp - gs://rekall-test/test.aff4

If the output filename is specifies as a single dash (“-“), the imager writes the AFF4 volume to stdout. This
allows the image to be piped to a different tool. The example above streams the image directly to a cloud
storage bucket without needing to write a temporary local copy.

3.2 Inspecting AFF4 volumes.

AFF4 volumes are based around the common Zip compression standard (for large volumes we use Zip64 extensions).
Therefore it is possible to examine AFF4 volumes using common zip utilities:

unzip -l /tmp/test.aff4
Archive: /tmp/test.aff4
aff4://c7c60030-cc3e-43a6-b5d1-1551b29c9918
Length Date Time Name
--------- ---------- ----- ----
189432 2018-01-15 12:50 usr/bin/mksquashfs
951952 2018-01-15 12:50 usr/bin/x86_64-w64-mingw32-cpp
...

50929 2018-01-15 12:50 information.turtle
...

8 Chapter 3. The AFF4 Imager

AFF4 imager Documentation, Release 1.0

--------- -------
315748394 327 files

We can see that each volume has a unique URN, and it contains a file called “information.turtle”. This file contains
the AFF4 metadata for the volume as an RDF turtle file.

We can get the aff4 imager to display the metadata in the volume using the -V flag:

aff4imager -V /tmp/test.aff4
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix aff4: <http://aff4.org/Schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<aff4://2d874721-267b-40fb-ac20-7bc22a8af883/proc/kallsyms>
aff4:original_filename "/proc/kallsyms"^^xsd:string .

<aff4://2d874721-267b-40fb-ac20-7bc22a8af883/proc/kcore>
aff4:category <http://aff4.org/Schema#memory/physical> ;
aff4:stored <aff4://2d874721-267b-40fb-ac20-7bc22a8af883> ;
a aff4:Image, aff4:Map .

<aff4://2d874721-267b-40fb-ac20-7bc22a8af883/proc/kcore/data>
aff4:chunkSize 32768 ;
aff4:chunksInSegment 1024 ;
aff4:compressionMethod <https://www.ietf.org/rfc/rfc1950.txt> ;
aff4:size 8531652608 ;
aff4:stored <aff4://2d874721-267b-40fb-ac20-7bc22a8af883> ;
a aff4:ImageStream .

Note that if we have multiple volumes (as in a split volume set) we should list all volumes as parameters to -V.

In the above output we see some interesting artifacts of the AFF4 format:

1. All streams within the AFF4 volume have a unique URN. The imager creates the URNs based on their original
filename, but this is just a convenience. The imager also stores the original filename (which might contain
backslashes on windows).

2. Smaller files (e.g. /proc/kallsyms) are stored as AFF4 Segments which are just regular zip archive members.
This means you can extract Smaller files using normal zip tools.

3. Larger files are stored as AFF4 ImageStream. This type of storage chunks the file data into 32kb chunks, and
stores groups of chunks in their own zip segment.

4. Finally sparse images (such as memory images) are stores as an AFF4 Map. The map does not actually store any
data itself (the data is stored by the stream /proc/kcore/data) but it specifies a transformation of its underlying
stream.

Finally using the -l flag enables a listing of all Image streams from the volume.

3.3 Extracting streams from AFF4 volumes.

To extract streams from an AFF4 volume we use the -e flag.

1. Extract streams by using wild cards:

aff4imager -e '*/kallsyms' --export_dir /tmp/export/ /tmp/test.aff4

3.3. Extracting streams from AFF4 volumes. 9

AFF4 imager Documentation, Release 1.0

By default export directory is the current directory. The imager will create a directory structure under the export
directory which contains all the matched files.

2. Extract streams from stdin:

aff4imager -l /tmp/test.aff4 | grep kcore | \
/aff4imager -e @ --export_dir /tmp/export/ /tmp/test.aff4

3.3.1 For developers.

10 Chapter 3. The AFF4 Imager

	Why use AFF4?
	The AFF4 C/C++ Library
	The AFF4 Imager
	Acquiring files.
	Inspecting AFF4 volumes.
	Extracting streams from AFF4 volumes.

